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ABSTRACT

Over the past 15 years, there has been tremendous interest in the area
of computer-intensive statistical methods. One specific technique whose
use has become increasingly widespread is the "bootstrap". Using the
computational power of computers, it is possible to obtain estimates of
standard error and bias and to construct confidence intervals for esti-
mators without having to make assumptions about the sample distribu-
tion of the estimator. To date, little use of the bootstrap has been made
in accounting research primarily because few accounting researchers
were aware of its existence. This article provides an intuitive overview
of the bootstrap, demonstrates the technique using three examples and
provides information regarding the software which is available to im-
plement bootstrapping techniques.

INTRODUCTION

The primary objective in statistics is to draw inferences about the (un-
known) population parameters by examining a sample which has been
drawn randomly from the population. Much statistical theory has
evolved to aid in this task. However, prior to the widespread introduc-
tion of computers, it was difficult to perform lengthy computations. This
led to concentration on statistical models which had concise analytical
form and which were not expensive from a computational point of view.
This imposed a limitation on the usefulness of statistical inference in
certain cases. The availability of low cost computing power is beginning
to remove these constraints.
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One of the major advantages of increased availability of computational
power is that statistical inference need no longer be bound by classical
theory. Inferences can be made for more complex estimators of popula-
tion parameters than was possible in the past.

Additionally, the analysis of data need no longer rely on assumptions of
gaussian or other well-known distributions. The researcher will be in-
creasingly freed from the need to understand the detailed mathematical
underpinnings of the statistical techniques used. Indeed, the use of the
new techniques may prevent some mis-applications of classical tech-
niques and thus lead to better data analysis.

AN OVERVIEW OF THE BOOTSTRAP

Suppose a random sample is drawn from a large population and the val-
ues obtained are 2.0, 2.5, 2.25, 2.12, 10.0. A point estimate of the
population parameter of interest may be made from this sample infor-
mation. How can the researcher estimate the standard error or bias or
construct a confidence interval for this point estimate? Classical statis-
tics relied on mathematical theory to calculate these quantities. The
bootstrap aims to estimate these without overt reliance on complex the-
ory but rather by using vast amounts of computing power. The bootstrap
belongs to a class of techniques known as resampling techniques. The
underlying premise is that the sample contains more information than
has typically been used by classical statistical methods. Bootstrap tech-
niques move the traditional sampling analogy one step further. By re-
sampling (with replacement) many times from the original sample, it is
possible to construct estimates of standard error, bias and confidence
intervals for the chosen estimator. Bootstrapping techniques permit such
estimations for many statistics even where no obvious mathematical
theory exists as to the sample distribution of that statistic. In the case of
the above sample, resampling with replacement could yield a new (or
bootstrap) sample such as 2.5, 2.5, 2.12, 2.0, 10.0. Indeed, a bootstrap
sample such as 10.0, 10.0, 10.0, 10.0, 10.0 could also be obtained.

The bootstrap samples mirror the original sample in some way, which in
turn mirrors the original population in some (possibly unknown) way.

For each bootstrap sample that is drawn from the original sample, it is
possible to calculate the relevant statistic of interest. If 1,000 bootstrap
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samples are drawn, 1,000 bootstrap estimates of the statistic of interest
are calculated. From these bootstrap estimates, inferences can be made
concerning the relevant population parameter. The above explanation
can be stated in a more precise mathematical fashion.

Consider the following general problem. Let R(X,F) be a random vari-
able where X=(x, ..., X,) is a vector of data drawn as a sample from the
unknown probability distribution F. We are interested in estimating
some feature of the distribution of R, for example E(R), Var(R) or
SD(R). Let E denote the empirical cumulative distribution function (cdf)

of the sample X, E(x) =#(X; < x), and define a bootstrap sample as a
n

random sample of size n drawn from-E. Hence, the bootstrap sample
(denoted X ) is simply a sample drawn with replacement from the origi-
nal data. Define R as RgX sE), that is, the version of R computed using
the bootstrap sample X (the resample) rather than using the original
sample. If this procedure is repeated B times, we obtain R 4, ..., R p.
The histogram of the R values is often called the bootstrap distribution
of R and can be shown in many cases to approximate the true distribu-
tion of R.

Estimation of Standard Errors

Once a statistic has been calculated for a set of data it is necessary to
determine how accurate an estimate it is of the true (unknown) popula-
tion parameter. Standard errors are one way of assessing this. If we take
a simple example, we can see how the bootstrap can be of use. The re-
searcher is often interested in the ‘central tendency’ of a set of data.
Common measures are the mean, mode and the median. Due to the
straightforward analytical properties of means, they are often used as a
measure of central tendency. The central limit theorem enables the re-
searcher to calculate a confidence interval for a sample mean when a
large sample is available. However, outliers can have a distorting affect
on the sample mean and it may sometimes be preferable to use a
trimmed mean or some other measure of central tendency.

However, it is not a straightforward procedure to obtain a measure for
the standard error of this statistic. The bootstrap algorithm comes to the
rescue. By generating many bootstrap samples from the original sample
and generating the relevant statistic for each bootstrap sample, the stan-
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dard error may be estimated. Thus, standard errors may be estimated for
many statistics where no obvious mathematical formulae exist. This
enables the researcher to use the most appropriate statistic for the task at
hand rather than a statistic for which distributional theory exists.

The bootstrap algorithm for calculation of estimated standard errors is
as follows:

(Algorithm 1)
Bootstrap Algorithm for Estimating Standard Errors
Data £ X4, vsses , Xp ; Statistic of interest is R(X,F)

B Times

* *
Resample: Draw x [, ..., X p at random with replacement from x| .., Xp

* *
Compute R p=Rp(X , E) based on b=1, ...., B

.

Estimate the standard error s.e.F (R) by the sample standard deviation
of the B replications

* 1¢ R =R 172

eE®R) = (= R'b- R
seER) = (= bEﬂ,(b )

—% 1 B
where R = — ZR *h
B I

Notice that the bootstrap estimate based on B resamples is a Monte
Carlo approximation to the nonparametric maximum likelihood estimate
(MLE) of the quantity of interest, the approximation arising from the
fact that B is finite rather than infinite.

From the examples given so far, it may appear that bootstrap procedures
only apply where the sample data consists of individual data points.
This is not so. The individual data items x1, ...., Xn can be much more
complex. They could be vectors or matrices. Consequently, it is possible
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to extend bootstrapping procedures to more complex settings. Regres-
sion models are one such example.

Regression Models

The common OLS linear regression model depends on several assump-
tions. The model is assumed to be linear in the parameters (B B etc.),
the error terms (€) are assumed to be drawn from an error distribution

(Z) where Ez(€) = 0 and the distribution is assumed to be normal. In the
simple regression case, it can be shown that the bootstrap estimates of
standard error are asymptotically identical to those of classical theory
(Hjorth, 1994). However, the same bootstrap procedure used to produce
estimates of standard error in the simple OLS case can be applied to
much more complex regression models for which no simple mathemati-
cal theory exists. Examples of this would be situations where the regres-
sion function is non-linear in the parameters and/or where the fitting
criterion is not least squares. This allows the researcher the freedom to
use the most appropriate model rather than restricting the analysis to
modeling techniques that are amenable to simple mathematical analysis.
If used wisely, this increased power can only strengthen the researcher’s
analysis.

To demonstrate the use of bootstrapping techniques, we will look at the
simplest case.

Suppose we have a standard linear regression model Y; = x; B +&(i=
I, ...., n) where Y; is the ith response variable, B is the vector of regres-

sion coefficients, x; is the ith row of predictor variables and €; is the ith
error term.

Two simple bootstrapping methods may be used (Efron and Tibshirani,
1993). Resampling can be applied either to the residuals or to the data
vectors. The second case will be examined here.

If we consider that all the original data observations (the Yjs and the
xis) form the rows of a data matrix with say ‘n’ rows, it is possible to
randomly select ‘n’ rows with replacement from the original data matrix
and construct a bootstrapped (resampled) data matrix. Performing OLS
on this matrix will generate bootstrapped values for the predictor vari-
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ables (the Bs). Having generated B (a large number) of these, the boot-
strap algorithm for calculation of the standard error is applied to each
regression coefficient in turn and the values for the standard errors of
each coefficient are obtained.

Given that two methods of bootstrapping are possible in the regression
case, which is preferable? It depends on the nature of the underlying
system being modeled. Bootstrapping of residuals does assume that the
distribution of error terms is the same for all values of the dependent
variables. This is not always so. Consequently, bootstrapping data vec-
tors may sometimes be preferable. If resampling of the data vectors
were to be performed, the following algorithm would be applied.

(Algorithm 2)
Bootstrap Algorithm for Resampling Data Vectors
Create a new data matrix by resampling ‘n’ rows with replacement
from the original data matrix

v

Calculate the OLS regression coefficients for the bootstrapped data
matrix

.

Repeat the process B times

v

Calculate the bootstrap estimate of standard error for each
regression coefficient based on the B bootstrapped values of that
coefficient using algorithm 1 above.

The choice of bootstrapping methods available in the regression case
indicates that there may not be a unique way to use bootstrap concepts
in attacking a statistical inference problem. The final choice of method
may depend on the computational complexity of each.
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Construction of Confidence Intervals

Whilst a point estimate of a population parameter provides some infor-
mation, an estimate of its variability provides additional useful informa-
tion. An estimate (bootstrap or otherwise) of the standard error of a sta-
tistic is of limited use if we have no idea as to the sample distribution of
that statistic. Commonly, assumptions are made (and not always well
tested) that a statistic has some well-known sample distribution such as
the gaussian distribution. Clearly the bootstrap methodology will have
to provide some means to construct confidence intervals if it is to enjoy
widespread use.

Several bootstrap methods for the construction of confidence intervals
are in common use. Two methods are briefly mentioned here. The
reader seeking more information is referred to Hjorth (1994).

The simplest way to construct a bootstrap confidence interval is to use
the bootstrap percentile method interval. It is one of the most com-
monly-used methods due to its simplicity but it can suffer from poor
coverage of the interval (normally undercoverage, i.e. an interval ap-
pearing to give 95% coverage may actually only be giving 89% cover-
age) although it does provide intervals with stable length. How does the
method work?

*
The basic premise of the method is that the bootstrap distribution of 8
(denoting the bootstrap version of the statistic) conditional on the data

X[, ...y Xp, is similar to the unknown, unconditional distribution of 0 (the

*
statistic of interest). A very large number (say B) € s are calculated and
are then ordered from lowest to highest to obtain

* *
8 (I)S--—<-9(B)-

A two sided 100(1-01)% interval for 0 is

* O * (04
® ((—2"B)+1),(9 (@ )yB)+1))

o (04
where (E B) denotes the integer part of E B etc.
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These values are merely the relevant sample quantiles of the bootstrap
*
histogram of the 8 values.

A second type of percentile method is the percentile - t method. This is
based on the asymptotically pivotal quantity (8 - 0)/ s.e.(8) where 8 =
O(xq, ..., Xp) (the statistic based on the initial sample) and s.e.(8) = s.e.
e(xl‘ ...., Xp). Consequently, to use this method it is necessary to esti-

mate the standard error of 9*. The bootstrap can be used to do this but,
as shall be seen, this introduces a ‘double bootstrap’ element into the
calculations. For each bootstrap sample drawn from the original sample,
it is necessary to calculate an estimate of standard error for the bootstrap
estimator calculated from that specific resample. This involves a second
bootstrap resampling which takes place by resampling from that boot-
strap sample.

The basic premise here is that the bootstrap distribution of (9=k - 9)/5.6.(9*)

* *
(where s.e.(8 ) is the bootstrap estimate of the standard error of 8 ),
conditional on the data, should closely approximate the unconditional

distribution of (8 - 0)/ s.e.(B).

The need for a double bootstrap greatly increases the computational
burden, generally by a factor of 100 or more. Better methods of con-
structing confidence intervals exist and more information can be found
in the references.

The use of bootstrap techniques to construct confidence intervals gives
the researcher a powerful new tool. Whatever the mathematical com-
plexity of the sampling distribution of the statistic/regression coefficient
of interest, a point estimate and a confidence interval for that estimate
can be constructed. This frees the researcher from the need to restrict
his/her analysis to the small subset of statistics for which distribution
theory has simple mathematical form. It opens up the opportunity for
the researcher to develop new statistics of interest for the research ques-
tion at hand. This enables the researcher to precisely target the analyti-
cal tools used on the research question rather than using general purpose
tools of analysis which may not be fully appropriate for the question
under review.
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PRACTICAL APPLICATIONS OF THE BOOTSTRAP

Three examples of the bootstrap are developed to demonstrate how the
technique can be applied in a wide variety of settings. The first example
demonstrates how the bootstrap can be used to develop estimates of
standard error and confidence intervals for the correlation coefficient.
The second demonstrates the estimation of standard error and confi-
dence intervals for the median. Traditional statistical methods cannot
calculate confidence intervals for these items without making restrictive
assumptions. The use of bootstrap techniques enables the researcher to
extend his/her analysis beyond the limits imposed by traditional statisti-
cal methods. The final example shows how the standard errors of re-
gression coefficients may be estimated.

The three examples are constructed for the purpose of demonstration of
the bootstrap technique. The interpretation of the statistical results in
each case is not obvious as no attempt has been made to clearly define
the relevant population from which the sample data was drawn. The
basic assumption in each example is that the sample data used in the
bootstrap procedures has been randomly drawn from some population.
The lack of precision in defining the relevant population does not im-
pact on the mechanical procedures in applying bootstrap procedures to
the sample data.

The Correlation Coefficient

Correlation coefficients are often quoted in research papers and, com-
monly, little effort is expended in showing how accurate these point
estimates are. This is similar to calculating a mean and drawing conclu-
sions from it without estimating its standard error or confidence inter-
val. In the following example, grade data for undergraduate accounting
students is examined to demonstrate how a standard error and a confi-
dence interval may be estimated for a correlation coefficient.

The grade data was drawn from the first and second year accounting
grades of 105 college students (the population). The true population
correlation coefficient was calculated for the students and was found to
be 0.679.
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To demonstrate how the bootstrap could be used had only a sample of
student grades been available, a random sample of 15 students was
drawn from the original 105. One hundred bootstrap resamples were
then drawn from this random sample and the bootstrap estimate of stan-
dard error for the random sample was calculated using algorithm 1. To
assess the stability of the estimate, the entire procedure was repeated 10
times to obtain 10 different estimates.

The bootstrap calculations were performed using a spreadsheet. The
resampling procedure was performed by randomly generating a series of
numbers (0-1) and combining these with a series of conditional IF
statements to determine which students’ grades were selected to con-
struct the initial sample of 15 students. A similar procedure was re-
peated to generate 100 bootstrap resamples of 15 students from the ini-
tial 15 students selected. The built-in spreadsheet function for calcula-
tion of a correlation coefficient was used to calculate the bootstrapped
correlation coefficient for each of these 100 resamples. The results are
as follows:

Table 1
Trial Mean Maximum Minimum Range Bootstrap
Bootstrap Estimate of

Estimate of Standard
Correlation Error
1 0.7055 0.9393 0.2678 0.6715 0.1408
2 0.5549 0.9248 -0.3790 1.3038 0.2267
3 0.4540 0.9003 -0.4449 1.3452 0.2300
4 0.4917 0.8932 0.0230 0.8702 0.1770
5 0.5369 0.8787 0.0859 0.7928 0.1640
6 0.7616 0.9628 0.4676 0.4952 0.0980
d 0.7337 0.9217 0.0488 0.8729 0.1418
8 0.7987 0.9569 0.4997 0.4572 0.0811
9 0.7111 0.9470 0.2501 0.6969 0.1170
10 0.5348 0.8703 -0.1003 0.9706 0.1868

As expected, the 10 different random samples produced differing esti-
mates of the standard error. It is noticeable that the trials that had a

10
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mean bootstrap estimate of the correlation which was some distance
from the true correlation (0.679) also produced the larger estimates of
standard error. This seems intuitive, as the fact that the mean is far from
the true correlation would tend to indicate that the sample contains some
outlying student grade observations. This increases the variability be-
tween the correlation figures produced by the bootstrap resampling pro-
cedures within that trial and consequently would inflate the bootstrap
estimate of standard error. The range of the bootstrap correlation coeffi-
cients in each trial further demonstrates this. Those trials with the great-
est spread between the highest and lowest bootstrap correlation coeffi-
cients tended to have the larger estimates of standard error.

Another consideration in using the bootstrap to estimate standard error
is the number of bootstrap resamples that should be taken from the ini-
tial sample to ensure the bootstrap estimate of standard error is stable.
Using a spreadsheet, a random sample of 15 student grades were drawn
from the population and 10, 20, 50, 70, 100, 200, 250, 500, 750 and
1,000 resamples respectively were drawn from this sample. For each of
these resample sizes, the bootstrap estimate of standard error was cal-
culated and the results have been graphed below (Diagram 1). The
graph below shows the effect on the bootstrap estimate of standard error
as the number of resamples taken from the initial sample increases.
Clearly, when the number of resamples is small, the bootstrap estimate
of standard error is quite variable. As the number of resamples in-
creases, the bootstrap estimate of standard improves in stability. The
graph shows that the bootstrap estimate of standard error is quite stable
after only a few hundred resamples.

The number of bootstrap resamples used when estimating the standard
error can often be limited to approximately 100.

11
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Diagram 1 j
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Confidence Intervals for the Correlation Coefficient

Two methods for the calculation of confidence intervals have already
been outlined. The simplest, the percentile method, will be used to
demonstrate how a confidence interval may be constructed. Initially, a
confidence interval will be constructed using the sample from which the
1000 resamples above were drawn.

The 5th, 10th, 90th and 95th percentiles of the histogram of the 1,000
bootstrap estimates of the correlation coefficient can be obtained either
by using spreadsheet functions to sort the bootstrapped correlation coef-
ficients or by importing the bootstrapped correlation coefficients into a
statistical package such as SPSS and using the built-in functions to de-
termine the relevant percentiles. The percentiles form approximate con-
fidence intervals. Confidence intervals are also calculated for cases
where the number of resamples drawn from the original sample are 100
and 500 respectively. The results are:
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Table 2
Number of 5" 10" 90" 95"
Resamples Percentile | Percentile | Percentile | Percentile
100 0.180 0.306 0.731 0.788
500 0.266 0.347 0.724 0.768
1000 0.276 0.355 0.720 0.758

It is noteworthy that the above intervals all contain the true, known
value of the population correlation coefficient. Returning to the initial
10 trials in which a different random sample of 15 students was drawn
on each occasion and on which 100 bootstrap resamples were then per-

formed, we get the following estimated confidence intervals:

Table 3
Trial 5th 10" 90" 95"
Number Percentile | Percentile | Percentile | Percentile
1 0.430 0.512 0.860 0911
2 0.165 0.307 0.803 0.884
3 0.030 0.178 0.708 0.791
4 0.190 0.271 0.706 0.805
5 0.255 0.285 0.745 0.804
6 0.619 0.633 0.888 0.892
7 0.493 0.558 0.867 0.880
8 0.659 0.704 0.900 0.921
9 0.493 0.546 0.844 0.866
10 0.140 0.264 0.751 0.823

All the 5"-95th percentile intervals contain the true value of the corre-
lation coefficient. Nine out of the ten 10"-90th percentile intervals
contain the true value.

The Median

Several measures of the central tendency within a data set exist. Most
analysis of central tendency focuses on the mean due to the relative ease

13
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with which standard errors and confidence intervals can be constructed.
However, outliers can dramatically affect the mean and so it may be
preferable to use another measure of central tendency. One alternative is
the median but this raises the problem of how to determine standard
errors and confidence intervals for this measure. This example shows
how the bootstrap can be used to calculate a standard error and a confi-
dence interval for the median.

The data used for this example consists of a subset of financial state-
ments filed by companies on the Irish Stock Exchange and by statutory
bodies for the year 1991 (O’Brien and McCallig, 1995). Banks, gov-
ernment bodies and exploration companies were removed from the sets
of financial statements examined. This left a population of 70 compa-
nies from which smaller samples would be drawn in the bootstrap cal-
culations. The current ratios of these companies were computed and the
object was to calculate an estimate of standard error and a confidence
interval for the median current ratio. When looking at such data, the
mean may not be an appropriate measure of central tendency as very
high ratios will have undue influence (the distribution of ratios is trun-
cated at zero). The removal of outliers (ie. the use of a trimmed mean)
will potentially lead to the loss of some information. Additionally,
trimming the mean will result in the use of an estimator of central ten-
dency which does not have an obvious sampling distribution. Under
traditional statistical methods, there is no simple way to calculate a con-
fidence interval for such an estimator. Use of the median enables the
researcher to use all of the sample data (avoiding potential information
loss) and the application of bootstrap techniques enables the researcher
to construct a confidence interval for the median.

The following population parameters were calculated from the entire 70

companies:
Mean 1.49
Median 1.43

Std. Error of the Mean  0.085

To demonstrate the bootstrap, a random sample of size 15 was drawn
from the total population of 70 companies. This process was repeated
10 times. Ten bootstrap estimates of standard error were calculated for
each of the random samples of size 15.

14




The Bootstrap — Useful for Accounting Researchers?

The resampling and the calculation of the median current ratio for each
bootstrap sample was performed using a spreadsheet. The results were

as follows:

Table 4
Sample size: 15
Trial Mean of Minimum | Maximum | Range | Bootstrap
Number Bootstrap Estimate
Medians of

Standard

Error

1 1.3667 1.153 1.692 0.539 0.0976

2 1.4223 0.982 1.708 0.726 0.1079

3 1.3710 1.188 1.692 0.504 0.1042

4 1.4310 1.258 1.50 0.242 0.0477

5 1.4516 1.258 1.706 0.448 0.1041

6 1.4898 1.369 1.531 0.162 0.0352

7 1.4509 1.126 1.525 0.399 0.0623

8 1.3084 1.022 1.511 0.489 0.1014

9 1.5098 0.857 1.839 0.982 0.1351

10 1.3936 0.887 2.239 1.352 0.2890

The standard errors are not large compared with the mean of the medi-
ans in each trial. Examination of the range of bootstrap estimates of the
median in each trial shows that those trials with the greatest range
tended to have the larger bootstrap estimates of standard error. This is
intuitive and in keeping with the results in the correlation example

above.

Confidence Intervals for the Median

Simple percentile confidence intervals can be calculated for the median
in the same manner as those calculated for the correlation coefficient
above. The results are as follows:

15
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Table 5
Sample Size: 15
Trial Number 5" 10" 90" 95"
Percentile | Percentile | Percentile | Percentile

1 1.217 1.252 1.478 1.531
2 1.229 1.326 1.567 1.573
3 1.223 1.254 1.511 1.683
4 1.373 1.373 1.499 1.499
5 1.258 1.352 1.635 1.703
6 1.373 1.450 1.525 1.531
7 1.352 1.447 1.500 1.524
8 1.126 1.217 1.373 1.510
9 1.305 1.352 1.706 1.706
10 1.126 1.126 2.102 2.102

The true median falls in all the 5"-95th percentile intervals and in seven
of the 10"-90th percentile intervals.

Regression and the Bootstrap

This example demonstrates the use of a bootstrap procedure for esti-
mating the standard errors of regression coefficients. In the example, the
OLS fitting criteria are used but the same bootstrap principles could be
applied to cases where the fitting criteria are more complex.

Suppose the following data on movements in petroleum prices and

transportation companies share prices is obtained and the researcher
wishes to fit a simple linear regression model.

16
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Petroleum Transportation
Price Movements  Share Price Movements
-9.89% 20.74%
19.27% 14.14%
13.89% 3.26%
8.37% 20.08%
11.14% 19.64%
-5.41% 14.18%
20.58% 6.35%
8.21% -1.73%
22.59% -8.03%
10.26% 11.19%
12.64% 9.99%

It seems reasonable that an increase in petrol prices might tend to de-
crease the share price of transport companies. The linear model is as-
sumed for the purposes of this example.

The bootstrap is carried out in this case by resampling rows from the
above data matrix of price changes to generate the new bootstrapped
data matrix of price changes. The OLS regression coefficients for this
bootstrapped (resampled) matrix are calculated. Repeating this step a
large number of times produces a large number of bootstrap estimates
for the constant and slope regression coefficients. From these, the stan-
dard errors for the regression coefficients can be estimated using algo-
rithm 1. The entire bootstrap procedure was performed using a spread-
sheet. A macro was written which would read in the raw price/share
price information and which would automatically resample from this
information to create 100 bootstrapped data matrices. The macro then
calculated the regression coefficients for each of these bootstrapped
data matrices and from this information calculated the bootstrap esti-
mates of standard error.

In this example, we can analytically calculate the values for the standard
errors if we make the usual OLS assumptions. This enables the boot-
strapped values to be compared with the theoretical values to determine
whether the bootstrap values seem accurate. (Of course, the accuracy of
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the supposed ‘true’ values is dependent on whether the OLS assump-
tions are met in this case).

The procedure was performed for resample sizes of 10, 20, 50 and 100.
For each of these resample sizes, several bootstrap trials of differing
length were performed. This enables a number of comparisons to be
made. First, what is the effect of varying the number of resamples in
bootstrap trials of the same length? Second, what is the effect of varying
the number of bootstrap trials while holding the number of resamples
chosen constant? Finally, how close are the bootstrap estimates of stan-
dard error to the true standard errors for the regression coefficients in
each case?

The results of the average of the first 10 bootstrap trials are:

Table 6

Number of Bootstrap Bootstrap Bootstrap Bootstrap
Resamples Estimate of | Estimate of | Estimate of | Estimate of
Constant Slope SE of SE of Slope

Constant

10 0.157584 -0.51868 0.033696 0.229753

20 0.155388 -0.51013 0.038963 0.275954

50 0.155411 -0.52127 0.039005 0.270142

100 0.15466 -0.51398 0.038448 0.266354

OLS values 0.15121 -0.50623 0.03597 0.257179

The results of the average of the first 100 bootstrap trials are:

18
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Table 7

Number of Bootstrap Bootstrap Bootstrap Bootstrap
Resamples Estimate of | Estimate of | Estimate of | Estimate of
Constant Slope SE of SE of Slope

Constant

10 0.156614 -0.5345 0.03806 0.26839

20 0.154687 -0.51175 0.03902 0.27962

50 0.154274 -0.51257 0.03847 0.27426

100 0.15434 -0.51352 0.03824 0.27234

OLS values 0.15121 -0.50623 0.03597 0.25717

Examining the two tables produces some interesting results. The results
are variable for the cases where the number of resamples is small (10 or
20) but the general trend within each individual table is clear once the
number of resamples gets larger.

Increasing the number of resamples seems to improve the accuracy of
the bootstrap estimates of standard error. Intuitively, this is not surpris-
ing, given the dilution of the weight attached to an unrepresentative re-
sample as the number of resamples increases. Examining the effect of
increasing the number of bootstrap trials over which the results are av-
eraged gives less clear results. Increasing the number of trials the results
are averaged over from 10 to 100 would be expected to improve the
accuracy of the bootstrap estimate. This has not clearly happened in this
case.

However, it should be pointed out that the results obtained above indi-
cate reasonably rapid convergence to the true standard errors. Table 8
below highlights the percentage difference between the bootstrap esti-
mates in each case and the true values.

19
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Table 8 ]

Number of Percentage Difference | Percentage Difference
Bootstrap Between Bootstrap Between Bootstrap
Trials Estimate of SE of Estimate of SE of
Averaged Over Constant and OLS Slope and OLS Value
Value
10 7.40% 3.57%
100 6.31% 5.90%

This table highlights the performance of the bootstrap. Even in the worst
case, its estimate of standard error was within 7.40% of the OLS value
despite the fact that it was not based on any of the assumptions under-
lying the OLS regression model.

CONCLUSIONS

The above examples highlight some of the advantages and disadvan-
tages of using bootstrap techniques. The primary advantage is the less-
ening of the researcher’s dependence on traditional statistical techniques
which are sometimes used due to their mathematical tractability rather
than their exact fit to the task at hand.

The ultimate goal of bootstrap techniques is to free the researcher from
the need to use overtly complex mathematical theory along with its at-
tendant assumptions when making inferences and to encourage the re-
searcher to use the most appropriate statistical tool rather than the sta-
tistical tool which has a simple mathematical form. The substitution of
increasing amounts of computation for mathematical theory is becoming
more cost-efficient as the cost of computing power falls and the cost of
developing complex mathematical theory increases.

Bootstrapping is not without its limitations. It only addresses the analy-
sis of the data and cannot compensate for poor data collection or poor
interpretation of the results of the analysis. Perhaps a more fundamental
drawback is the lack of developed statistical theory supporting the tech-
nique in all possible applications. The bootstrap does rely on mathe-
matical underpinnings but these are hidden from all but an in-depth
analysis of the technique. Much work has been done on verification of
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the technique and it has been shown to work in a wide number of set-
tings (Hjorth,1994).

Apart from this issue, there are still unresolved issues in the practice of
bootstrapping. How many resamples should be taken from a sample to
construct an estimate of standard error, bias or a confidence interval? It
appears there is no simple answer as it depends on the characteristics of
the estimator being used and the data set at hand. What is the effect of
taking differing sample sizes on the accuracy of the bootstrap estimates?
It appears intuitive that no data analysis technique can compensate for a
lack of data to analyse.

The techniques do provide an interesting contrast to classical methods
and do appear to indicate that there is information within the sample that
classical techniques ignore.

It would seen reasonable that they are a useful tool for the researcher to
use when classical methods make assumptions that do not seem justified
by the data under analysis.

Bootstrapping techniques are already in widespread use in many statis-
tical applications. As yet, they have not been extensively applied in ac-
counting research. Clearly, research quality can only be enhanced by
use of the best research tools.

SOFTWARE RESOURCES FOR IMPLEMENTATION OF
BOOTSTRAP PROCEDURES

The three examples above were implemented using an ordinary spread-
sheet. However, this approach is not practical when dealing with very
large data sets or when the researcher wishes to use statistics for which
the spreadsheet does not have built-in functions.

Two basic approaches can be taken in the implementation of bootstrap
techniques when the limits of spreadsheets are exceeded. Bootstrap pro-
cedures can be applied using specialist software packages designed for
this purpose. Resampling Stats is one of the better known of these pack-
ages and is available from Resampling Stats, 612 N. Jackson Street,
Arlington, VA 22201, USA. A trial version can be downloaded from the
company’s web-site (http://www.statistics.com/software.html) for test
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purposes. This package provides good facilities for resampling from a
data set and enables the user to calculate the more common statistics of
interest. However, the package will not suffice for the researcher who
wishes to bootstrap complex, non-standard statistics.

More complex implementations of bootstrapping techniques are gener-
ally specifically designed for the task at hand. The bootstrapping algo-
rithms outlined in the paper can be easily implemented in any computer
language. The researcher needs to ensure only that the lan-
guage/compiler uses a good quality random number generator, as flaws
in this will impact on the randomness of the resampling procedure. Us-
ing a computer language with built-in mathematical and statistical func-
tions such as Matlab, Stata, Mathematica, S or S-Plus will greatly sim-
plify the programming requirements and the implementation of boot-
strap procedures will involve little more than the writing of an iterative
routine to resample with replacement from the data and a calculation of
the statistic of interest. The latest versions of Stata and Matlab (Statis-
tics Toolbox) contain some built-in bootstrap functions. An extensive
set of routines to carry out bootstrapping procedures in S and S-Plus are
available from the statistics archive at Carnegie-Mellon University and
can be downloaded by FTP access from lib.stat.cmu.edu using the login
id ‘statlib’ (file name — bootstrap.funs).

SUGGESTED FURTHER READING

Efron and Tibshirani (1993) provide a very readable account of boot-
strapping concepts and provide many examples using real data. It is
probably the best introductory book on the subject. The bootstrap was
popularised in Efron (1979) but this article drew on earlier work by
Hartigan (1971). The development of the asymptotic theory of the boot-
strap (explaining why it works) commenced in Bickel and Freedman
(1981). Extensions of the theory to regression cases are discussed in
Freedman (1981) and Holm (1993). Currently, much work is being per-
formed concerning the applicability of bootstrap concepts in differing
areas of statistics and many other references exist. Lepage and Billard
(1992) provides an excellent source of such material. Hjorth (1994)
provides a good source of up-to-date references for the bootstrap and
explains the mathematical underpinnings of the techniques in some de-
tail.
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